Tag Archives: Bet Pic

2014 Review

Comets

Comets orbiting β Pic (Credit: ESO)

Results from Kepler data continued to stream in. We were graced with the discovery of a transiting Uranus-sized planet in a 704-day orbit. This is the first time a transiting planet has been discovered beyond its system’s ice line, and this may even be where the planet formed, instead of the typical case for transiting planets where we see them were they are today because of extensive inward migration in their past. Kepler’s 10th transiting circumbinary planet was reported, Kepler’s second multi-planet system orbiting a sdB star was announced and Kepler’s second disintegrating short-period planet was identified.
Kepler short-cadence data may have allowed for the detection of a non-spherical (oblate, like Saturn) exoplanet for the first time, by looking at photometry for Kepler-39 b. While the planet itself is unremarkable, a transiting sub-Neptune around HIP 116454 marks an exciting development: The first planet discovered by Kepler during it’s new “K2” mission.

The dramatic turn of events in the investigation of the planetary system at GJ 581 seems to have finally come to a conclusion. In 2007 a media frenzy accompanied the discovery of two new planets found to accompany the known 5-day Neptune. The innermost of the two new planets was a 5 Earth-mass planet in a 12-day orbit, and a 7 Earth-mass planet in a 80-day orbit. The 12-day planet was hailed as the first habitable planet candidate, despite getting more stellar insolation than Venus. In 2009, an Earth-mass planet at 3-days was found, and the new dataset brought the orbit of the 80-day planet closer to the star, down to ~60 days. Since most people had come to their senses regarding the habitability of the 12-day planet, the 60-day planet became the flag-bearer for habitability in the GJ 581 system. Everything changed in late 2010 when a 3 Earth-mass planet in the habitable zone was announced by the HARPS team. This was truly the most habitable exoplanet candidate known to date… if it were real. Multiple studies drawn out over the following several years debated back and forth how many planets exist around GJ 581. Three? Four? Five? Six? It depended on how you merged your datasets, how you handled noise in your data, and so on. This year, the issue seems to have been resolved by carefully examining the H-alpha lines of the star’s spectrum and finding variation in them that had affected the stellar radial velocity measurements. When corrected for, suddenly all of the habitable zone planets vanished. As of the end of 2014, there are no habitable planet candidates orbiting the star that only a few years ago was unanymously acknowledged to be the most promising extrasolar planetary system for habitability. Interestingly, a similar story may be unfolding at GJ 667, where some planet signals have turned up missing in other studies of the RV data. The morale of this story? Finding low-mass planets is hard.

HARPS continued to give us new planets, but the pace seemed somewhat slow. Some interesting results are the presence of planets in the cluster M67 (link). Planets were found orbiting the stellar companion to XO-2, as well, making the system an example of a binary system with planets orbiting both components. Interestingly, both host at least two planets, and one of each of them are a hot Jupiter. The hot Jupiter around the other star doesn’t transit, suggesting some misalignment between the two planetary systems. Other HARPS results included the identification of two families of comets around β Pictoris, with the identification of hundreds of individual comets through via transmission spectroscopy through their tails.

The news media nearly peed their pants with excitement over the discovery of a planet that, most optimistically, isn’t habitable now, nor has it ever been, in the habitable zone of the very nearby Kapteyn’s Star. Similar unwarranted attention was given to a mini-Neptune discovered in the habitable zone of GJ 832. While the excitement that planets like these get is unwarranted, it is at least gratifying to see the general public so interested in planets that vaguely resemble something habitable-ish. I just hope that when we do find more planets that are more like Earth, the interest hasn’t faded away already. HIRES also found a super-Earth orbiting the very nearby star GJ 15.

We saw first results from the Automated Planet Finder, a radial velocity based system to look for planets in the solar neighbourhood. The project gave us a nice four-planet system orbiting HD 141399 and aided in the discovery of a Neptune-mass planet at GJ 687. We also got to see first results from ESO’s SPHERE instrument.

A number of naked-eye stars were found to have planets, as well, such as planets around β Cnc, μ Leo, β UMi and one around σ Per.

On the direct imaging, we got a new planet imaged orbiting GU Psc with a mass ratio of ~30 and a separation of ~2000 AU… which seems more like a low-mass binary star than a true planetary system. Also, while not planets, ALMA observations of HL Tau have revealed increible detail showing planet formation carving out gaps in the circumstellar disk.

Microlensing gave us a hand-full of planets this year, among the most interesting is OGLE-2013-BLG-0341L Bb, a terrestrial-mass planet orbiting the secondary component of a binary system with a projected separation of 15 AU. For the microlensing event OGLE-2014-BLG-0124L, the event was observed both from the ground and from Spitzer, making the first joint ground+space detection of an exoplanet microlensing event. Observing the event from two different perspectives allowed for the distance to the lens to be accurately measured.

In early year-review posts, the hints of a planetary ring system around a planet orbiting 1SWASP J140747.93-394542.6 has been discussed. We now find that radial velocity observations of the star have place limits to the mass of the orbiting body, restricting it to a planet or brown dwarf. The rings do exist, and they extend far enough away from the planet to expect them to form moons.

2014 has been an interesting year. A thousand planets have been reported this year, mostly because of Kepler’s enormous contributions. It’s hard to know what 2015 will bring. RV surveys are continuing, and there are still thousands of Kepler candidates awaiting confirmation.

Advertisements

2013 Review

HD 106906

HD 106906 b, a directly imaged planet announced in 2013

First, foremost, and perhaps most painfully: α Centauri Bb may not really exist. What we thought was the Keplerian signal of an Earth-mass planet at our nearest neighbouring system may actually be noise in the data. While a bit painful, this is how science works – claims are rigorously tested and beaten tirelessly until they either continue to stand on the merit of the evidence, or they are refuted and disproved. This is how we keep the muck out of our pool of knowledge. Stay tuned… this could take a while to fully resolve.

The year began with direct imaging news: A new HST detection of Fomalhaut b (see here), suggesting the “planet” orbit is either not coplanar with the system disk or crosses the ring orbit and has a much lower mass than initially suspected. The imaged planet around β Pic b has also been independently confirmed. A circumbinary planet at 2MASS J01033563-5515561 became the first to be directly imaged. A planet with a mass of ~4 MJ became the lowest-mass planet directly imaged at HD 95086 (with the caveat that it isn’t clear what the nature of Fomalhaut b is). A planet perhaps of similar mass was later reported at GJ 504 (59 Vir).

Habitable zone discoveries started with the first known transiting Jupiter-sized planet in the habitable zone, PH2 b. Then things got very interesting with the simultaneous announcements of a super-Earth straddling the inner edge of the habitable zone of Kepler-69, and two habitable planet candidates at Kepler-62, which was covered here. HARPS found a nice system of planets around the M dwarf GJ 163. One of the planets is somewhat near the habitable zone, but it is my position that this planet does not deserve the attention worthy of a habitable planet candidate, with the planet receiving 40% more irradiation than Earth, and with the host star being an M-type dwarf, the atmosphere will not provide as much scattering of irradiation as Earth’s (Rayleigh scattering is increasingly efficient with decreasing wavelength), causing the surface of the planet to actually receive more than 40% more irradiation than Earth. Despite this, HARPS did provide us with another potentially exciting habitability result, with no less than three super-Earths in the habitable zone of GJ 667 C, with evidence for at least six, perhaps seven total planets there, however a reanalysis of the RV data seems to suggest that these new planets do not exist. Stay tuned…

Other noteworthy announcements included DW Lyn b, a giant planet orbiting a pulsating subdwarf B-type star. A hot Jupiter was also found orbiting a late-K/early-M dwarf by SuperWASP – a particularly rare find. A pair of super-Earths were found in a 2:3 resonance at HD 41248. A giant planet was found in a close orbit around a red giant branch star. Evidence of a second planet accompanying a newly discovered debris disk was presented for κ CrB. A super-Earth around HD 97658 was reported to be transiting (as was suspected two years ago but later dismissed due to a non-detection). The pair of planets at HIP 11952 ended up not existing – an error in compensating for the radial velocity of the observing site relative to the star.

Kepler results continued to stream in, starting with a rather interesting three-planet system at Kepler-68, with a mini-Neptune closest to the star, then an Earth-sized planet just outward of that, and a Jovian planet in a long-period orbit. It was shown that systems of multiple, low-mass planets uncovered by Kepler, like our own solar system, have orbits that are well-aligned with their host star’s equator (see here and here). Kepler results also uncovered a system with a pair of planets in a 2:1 resonance producing very strong transit timing and transit duration variations. A hot Jupiter at Kepler-76 provided strong evidence of super-rotation in the atmosphere via its secondary eclipse visible light photometry. Of particular note is the announcement of a planet smaller than Ganymede(!) at Kepler-37. A new population of small, rocky worlds in extremely short orbits was uncovered by Kepler, specifically Kepler-78 b wih its 8.5 hour orbit and KOI-1843.03 with its 4.2 hour orbit(!). Furthermore, Kepler unveiled the first transiting planets in an open cluster, NGC 6811.

Of particular note is the discovery of a transiting hot Jupiter orbiting a young, oblate, gravity-darkened T Tauri star. This remarkable system seems to imply that the formation mechanism behind hot Jupiters is fairly fast.

Exoplanet catalogues for WASP and Kepler saw their first triple digit identifiers, with WASP reaching WASP-100 and several Kepler planets being assigned triple digit Kepler-ID’s as well (e.g., Kepler-114, Kepler-128, Kepler-177, …).

While Kepler suffered another reaction wheel failure, effectively ending its primary mission, the year ended on a positive note with the launch of Gaia, which will likely find as many planets as Kepler, but in more intermediate period orbits and closer to the solar system.

2012 Review

An Earth-mass planet orbiting Alpha Centauri B. Credit:ESO

2012 brought us yet another remarkable year of extrasolar planet science. While the planet catch for 2012 was a little less than last year’s, the quality and importance of planets revealed this year was amazing. By far the most major results have been the discovery of an ~Earth-mass planetary companion orbiting the secondary component of the nearest star system to our own, Alpha Centauri (see here), and evidence for a system of planets around the nearby star Tau Ceti (see here). I hesitate to draw conclusions from a small amount of data, but the discovery of a terrestrial planet at none other than our nearest neighbour seems to really emphasize the point that terrestrial planets are likely as common as dirt.

A nice system of planets was reported at Gliese 676A consisting of super-Earths and Jovian planets, HATnet and SuperWASP produced more hot Jupiters, and interestingly, a couple sub-Earths may have been found around the nearby star Gliese 436. Spitzer provided us with the first detection of thermal radiation from a super-Earth (see here). A pair of M giants also became the first known to have planets, with planets reported around HD 208527 and HD 220074.

Circumbinary planets were announced around RR Cae, NSVS 14256825, Kepler-34 and Kepler-35 and Kepler-38, which is notable as the first Neptune-sized circumbinary planet.

Kepler results picked up en masse this year. At first it started out nice and slow, with small groups of planets being announced in batches (See here, here, here and here), followed by dozens and dozens of planets.

Interesting Kepler results included Kepler-64, the first quadruple-star system with a planet. The planet is a circumbinary planet, no less. But easily the most important circumbinary planet find was Kepler-47, the first transiting multi-planet circumbinary system. Multi-planet circumbinary systems have been found before but this is the first to have multiple planets transiting. This allows not only for their existence to be much more certain (non-transiting circumbinary planets still suffer from the mass-inclination degeneracy), but allows us to test for coplanarity. The Kepler-47 system demonstrates conclusively that short-period binary stars can host full systems of planets. Another pair of planets with very close orbits to each other, yet very dissimilar densities were reported at Kepler-36. The orbits of the planets in the Kepler-30 system were shown to be well-aligned with their host star’s equator, showing us that systems of planets are, like ours, often neatly arranged and not chaotically scattered.

Good news and bad news about the Kepler spacecraft. The good news is that the mission is extended for another three years. The bad news is that unfortunately, a reaction wheel on the Kepler spacecraft failed, and the mission’s continued usefulness now rests on all of the other reaction wheels remaining operational.

Kepler also unveiled a system of three sub-Earth planets huddled around a dim red dwarf, Kepler-42, which is very similar to Barnard’s Star, as well as a possible small terrestrial planet being evaporated away due to the heat from its star (see here). One of these three planets is Mars-sized(!).

We gained more evidence that the Galaxy is just drowning in planets both from continued Kepler results, HARPS results, and from gravitational microlensing data. Kepler showed us that hot Jupiter systems are frequently lacking in additional planets.

Last but not least, habitable planet candidates were reported around Gliese 163 and HD 40307, with unconfirmed habitable planet candidates reported at Tau Ceti and Gliese 667 C – with two more planets possibly occupying the star’s habitable zone. If GJ 667 Ce is confirmed, then it would be the most promising habitable zone candidate to date, based on its low mass.

At the end of 2011, I gave some wild guesses as to how the extrasolar planet landscape would look like at the end of 2012. Here we are and how have those predictions held up?

The Extrasolar Planets Encyclopaedia lists 854 planets as of the time of this writing, however it is missing quite a few. My own count has us at 899 planets.

  • The discovery of a ring system around a transiting planet

There are hints of ring systems (or perhaps rather circumplanetary disk systems) around Fomalhaut b, β Pictoris b, and 1SWASP J140747.93-394542.6 b (see here) but none of these are confirmed. So I’m calling it a missed prediction.

  • More low-mass planets in the habitable zone from both radial velocity and transit

Two new habitable planet candidates from radial velocity, none from transit.

  • Confirmation of obvious extrasolar planet atmospheric variability (cloud rotations, etc).

I was counting on continued monitoring of the HR 8799 planets to search for atmospheric variability, but it simply didn’t happen (or rather, if it did happen, the results are still pending). So I’m calling this a miss.

2013 could be a very interesting year, especially for Kepler. It seems we are on the verge of finding a true Earth analogue. The detection rate of candidate habitable planets is picking up and we’re really starting to get a list of targets to follow-up in the next decade. Here’s some more brave guesses for the end of 2013:

  • 1200 Confirmed planets and planet candidates
  • A satellite of an extrasolar planet (an “exomoon”)
  • A confirmed ring system around an extrasolar planet
  • Phase curve mapping of a sub-Jovian planet

2012 Planets